a2 United States Patent

US009100401B2

(10) Patent No.: US 9,100,401 B2

Stam et al. (45) Date of Patent: Aug. 4, 2015
(54) SHARED APPLICATION STORE FOR A USPC e 709/203
PLATFORM-AS-A-SERVICE (PAAS) SYSTEM See application file for complete search history.
(71) Applicant: Red Hat, Inc., Raleigh, NC (US) (56) References Cited
(72) Inventors: Kurt Stam, Ipswich, MA (US); Eric US. PATENT DOCUMENTS
Wittmann, Sandy Hook, CT (US) 2011/0265164 Al* 10/2011 Lucovskyetal. ccooovo...... 726/7
]] 2013/0340076 Al* 12/2013 Cecchettietal. 726/23
(73) Assignee: Red Hat, Inc., Raleigh, NC (US) * cited by examiner
(*) Notice: Sutbjetct. to artly (gs(cilaime;,. thte g:rm ;)f ﬂ;l; Primary Examiner — Taugir Hussain
patent is extended or adjusted under . :
U.S.C. 154(b) by 229 days. (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
57 ABSTRACT
(21) Appl. No.: 13/777,583 7 o)
shared application store for a platform-as-a-service (Paa
A shared application store for a platf (PaaS)
(22) Filed: Feb. 26, 2013 system is disclosed. A method of the disclosure includes
receiving, by a processing device of an application store, an
(65) Prior Publication Data indication of a selection of an application provided by the
application store, the application configured for deployment
US 2014/0244716 Al Aug. 28,2014 ona platform-as-a-service (PaaS) system, issuing a command
to create a copy of a repository associated with the selected
(31) Int.Cl application, wherein the command to create the copy further
GOGF 15/16 (2006.01) comprises tracking changes made to the copy and flowing the
HO4L 29/08 (2006.01) tracked changes to the repository from which the copy origi-
Ho4w 4/00 (2009.01) nates, and sending a copy of the repository in response to the
g a copy P ry P
(52) US.CL command to create the copy, wherein the copy of the reposi-
CPC HO4L 67/10 (2013.01); H 02’2%/1‘;/ %013) tory is deployed on the PaaS system for a user that selected the
: application.
(58) Field of Classification Search
CPC ..o HO04L 67/10; HO4W 4/003 20 Claims, 5 Drawing Sheets
400
=y
N

Receive identifying information of repository associated with an application that is
selected by a user for deployment on a Paa$S system
410

Receive identifying information of an account of the user for a PaaS system

Issue command to fork the repository of the selected application to the PaaS

system
430

)

Access the repository and generate copy of repository and supporting information
to maintain the fork operation
440

!

Send the generated copy and supporting information to the PaaS system using
the identifying information of the account of the user, wherein the application is
deployed on the PaaS system via a remote repository of a VM of the PaaS
system to which the repository is forked

!

Receive changes to the source code of the remote repository, the changes made
to the forked copy of the application at the remote repository

450

A J

Provide received changes as a different version of the application that can be
selected for deployment on the Paa$S system by one or more other end users
470

US 9,100,401 B2

Sheet 1 of 5

Aug. 4, 2015

U.S. Patent

| GOURISUI N | | GDURJSU] | |
LuopedKddy | | uogeoyddy |

4

0T waeig JOPIAOL] pNoID

PIT
vorgexddy

it xyp3
apoD eanog

OTT eaeq Jue|iD

I sunBiy
GUT 6148(JOASS SIS uopedddy
Kioysoday Acgsoday
N uoneaiiddy | uonesiiddy
OFl
oIS TIeQ
(4%
anpowy uopesBau
¥er
b4
wavodwos
0B Eo,,__ﬂ"r__ao
sSeed
BZT einpoy juswikodeq

:]1)
SNPOoW S8 JOEN

US 9,100,401 B2

Sheet 2 of 5

Aug. 4, 2015

U.S. Patent

qLET 99¢£Z €T hhuue..._”
€ 189D € 183D a8pmm)
¢ ddy g ddy

og€T ooy qgeg odoy
oy z ddv dowsy [ddy

ITET APON

BLET 47 4: 8€T Are1qr]
v | [awep ddy aSpmmy)

¢ ddy pasoq

agez odoyg
owsy 7 ddy

woer || eseTy BEC AT
viesp || men ddy a8pmis)

T ddy PojI0]

qgez odoy

oday sjomay
Sjomay [ddy ddy payrog
BZET SPON
0€T 3048 3poN

Z aunb14
|
g1 odey g ddy
4 82T
20[ABRg P — 951 odoy eoo] [ddy
UonRIJUSITY /21018 BIRQ
o~ / eIz
ewm oday resor] ddy pasjiog
[WSAS [£44
vopsasopi0 [soxon TIT WSy
DARS g N / FIOWIBEU] IPOY) 0INOS
|
07z 0key xoIE / oz
S[00 L, PUSWIWO)
012 24T JUsT[D

TOT 291Aa(] JaAlag 101§ woneoddy

¥l 1328

ampop i
SoupaY] §EEd 4 somos v

U.S. Patent Aug. 4, 2015 Sheet 3 of 5 US 9,100,401 B2

Receive identifying information of repository associated with an application that is
selected by a user for deployment on a PaaS system
310

\

Receive identifying information of a local repository location on a device of the

user to send the repository, where the local repository is part of a SCM system
associated with a PaaS system

320

y
Issue command to fork the repository of the selected application to the location on
the end user's device

330

\

Access the repository and generate copy of repository and supporting information
to maintain the fork operation

!

Send the generated copy and supporting information to the identified location of
the local repository on the end user device, wherein the application is deployed
on the PaaS system from the local repository subsequent to the sending
350

Receive changes to the source code of the local repository, the changes made to
the forked copy of the application at the local repository

340

360

y
Provide received changes as a different version of the application that can be
selected for daployment on the PaaS system by one or more other end users
370

Fig. 3

U.S. Patent Aug. 4, 2015 Sheet 4 of 5 US 9,100,401 B2

Receive identifying information of repository associated with an application that is
selected by a user for deployment on a Paa$S system

410

Receive identifying information of an account of the user for a PaaS system
420

Issue command to fork the repository of the selected application to the Paa$S
system
430

Access the repository and generate copy of repository and supporting information
to maintain the fork operation

!

Send the generated copy and supporting information to the Paa$S system using
the identifying information of the account of the user, wherein the application is
deployed on the Paa$S system via a remote repository of a VM of the PaaS

system to which the repository is forked
430

'

Receive changes to the source code of the remote repository, the changes made
to the forked copy of the application at the remote repository

'

Provide received changes as a different version of the application that can be
selected for deployment on the Paa$S system by one or more other end users

470

440

Fig. 4

U.S. Patent

FIGURE 5

Aug. 4,2015 Sheet 5 of 5 US 9,100,401 B2
500
52 4 510
PROCESSOR
N—"—"-7[" - VIDEO DISPLAY
PROCESSING LOGIG / 526
Appiication Store |] 530
Server Device 105 stz
7~ 04 < ALPHA-NUMERIC
MAIN MEMORY INPUT DEVICE
INSTRUCTIONS
Applcation Store o 514
Segser Device 105 - 526 —
CURSOR
- CONTROL
506 DEVICE
[42]
=
[a]
STATIC MEMORY 516
SIGNAL
508 - »| GENERATION
a DEVICE
NETWORK o
INTERFACE -
DEVICE
DATA STORAGE DEVICE
MACHINE-READABLE
MEDIUM ~24
P
SOFTWARE /526
-~ iy Application Store e
Server Devics 105

US 9,100,401 B2

1
SHARED APPLICATION STORE FOR A
PLATFORM-AS-A-SERVICE (PAAS) SYSTEM

TECHNICAL FIELD

The embodiments of the disclosure relate generally to plat-
form-as-a-service (PaaS) systems and, more specifically,
relate to a shared application store for a PaaS system.

BACKGROUND

Currently, a variety of Platform-as-a-Service (PaaS) ofter-
ings exist that include software and/or hardware facilities for
facilitating the execution of web applications in a cloud com-
puting environment (the “cloud”). Cloud computing is a com-
puting paradigm in which a customer pays a “cloud provider”
to execute a program on computer hardware owned and/or
controlled by the cloud provider. It is common for cloud
providers to make virtual machines hosted on its computer
hardware available to customers for this purpose.

The cloud provider typically provides an interface that a
customer can use to requisition virtual machines and associ-
ated resources such as processors, storage, and network ser-
vices, etc., as well as an interface a customer can use to install
and execute the customer’s program on the virtual machines
that the customer requisitions, together with additional soft-
ware on which the customer’s program depends. For some
such programs, this additional software can include software
components, such as a kernel and an operating system, and/or
middleware and a framework. Customers that have installed
and are executing their programs “in the cloud” typically
communicate with the executing program from remote geo-
graphic locations using Internet protocols.

PaaS offerings typically facilitate deployment of web
applications without the cost and complexity of buying and
managing the underlying hardware and software and provi-
sioning hosting capabilities, providing the facilities to sup-
port the complete life cycle of building and delivering web
application and service entirely available from the Internet.
Typically, these facilities operate as one or more virtual
machines (VMs) running on top of a hypervisor in a host
server.

Current PaaS offerings allow customers to build their own
custom applications either by writing code (application
development) or by composition (e.g. gears, add-ons, plug-
ins, etc). One problem encountered may be difficulty in build-
ing and deploying a new application on the PaaS offering.
Some customers may not have enough technical know-how to
easily accomplish this end product. For instance, to build and
deploy an application on a PaaS system, the customer should
know what components to build the application with, where
to obtain these components, how to add the components to the
PaaS platform, and how to configure the application on the
PaaS platform. Furthermore, current PaaS offerings do not
provide options for a pre-configured application that can be
easily deployed and run by a customer without the customer’s
involvement in the build and deployment process.

BRIEF DESCRIPTION OF THE DRAWINGS

The disclosure will be understood more fully from the
detailed description given below and from the accompanying
drawings of various embodiments of the disclosure. The
drawings, however, should not be taken to limit the disclosure
to the specific embodiments, but are for explanation and
understanding only.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 is a block diagram of a network architecture sup-
porting a shared application store for a PaaS system according
to an embodiment of the disclosure;

FIG. 2 is a block diagram of a PaaS system architecture to
receive an application for deployment from a shared applica-
tion store for the PaaS system according to an embodiment of
the disclosure;

FIG. 3 is a flow diagram of a method for providing an
application from a shared application store for deployment on
aPaaS system via alocal repository of a user’s device accord-
ing to an embodiment of the disclosure;

FIG. 4 is a flow diagram of a method for providing an
application from a shared application store for deployment on
a PaaS system via a remote repository associated with an
PaaS system account associated with a user that selected the
application according to an embodiment of the disclosure;
and

FIG. 5 illustrates a block diagram of one embodiment of a
computer system.

DETAILED DESCRIPTION

Embodiments of the disclosure provide for a shared appli-
cation store for a Platform-as-a-Service (PaaS) system. The
shared application store of embodiments of the disclosure
provides a selection of published applications that can be
implemented via gears on a PaaS system. A customer may
access the application store and select an application to
deploy on the PaaS system using the customer’s PaaS system
account. In some embodiments, the customer may also
locally deploy the application on the customer’s own device,
with subsequent deployment to the PaaS system via the cus-
tomer’s local repository.

Embodiments of the application store include logic that
can fork (e.g., create a copy that references an original) the
selected application to the PaaS system locally (at customer’s
device) or remotely (at PaaS system remote repository).
Because the application is deployed via a fork command, any
changes that the customer makes to the deployed application
may be tracked and flowed between the deployed copy and
the master application copy. These changes may be provided
as additional versions of the master application at the appli-
cation store.

Previously, cloud providers allowed customers to build
their own custom applications either by writing code (appli-
cation development) or by composition (e.g. gears, add-ons,
plugins, etc). Embodiments of the disclosure differ from that
approach by allowing portions of and/or an entire application
to be forked, modified, and contributed back to the market-
place of the application store. A variety of advantages result
from this implementation, including, but not limited to, an
enhanced community experience, ease of installation for
users, an opportunity for system administrators (e.g., those
who configure and deploy applications but not write applica-
tions) to participate in the Cloud Application marketplace,
and a better and easier try-before-you-buy experience for
users.

In one embodiment, a method of the disclosure includes
receiving, by a processing device of an application store, an
indication of a selection of an application provided by the
application store, the application configured for deployment
ona platform-as-a-service (PaaS) system, issuing a command
to create a copy of a repository associated with the selected
application, wherein the command to create the copy further
comprises tracking changes made to the copy and flowing the
tracked changes to the repository from which the copy origi-
nates, and sending a copy of the repository in response to the

US 9,100,401 B2

3

command to create the copy, wherein the copy of the reposi-
tory is deployed on the PaaS system for a user that selected the
application.

FIG. 1 is a block diagram of a network architecture 100
supporting a shared application store for a PaaS system
according to an embodiment of the disclosure. Network
architecture 100 includes a client device 110 communicating
with an application store server device 105 and a cloud pro-
vider system 160 over network 150. The network 150 may
include, for example, the Internet in one embodiment. In
other embodiments, other networks, wired and wireless, such
as an intranet, local area network (LAN), wide area network
(WAN), or broadcast network may be used.

The client device 110 may be any type of computing
device, for example, a device including a processor, a com-
puter-readable medium, and a memory. The client device 110
may be, for example, a personal computer, a laptop computer,
a tablet computer, a personal digital assistant (PDA), a cellu-
lar telephone, etc. In some embodiments, the client device
110 may be executing a browser application 114 or other
application adapted to communicate over Internet related
protocols (e.g., TCP/IP and HTTP) and/or display a user
interface. While a single client device 110 is shown in FIG. 1,
network architecture 100 may support a large number of
concurrent sessions with many client devices 110.

In one embodiment, client device 110 includes a source
code editor application 112 (“editor”) that is used to edit
source code of computer programs. An end user of client
device 110 may use editor 112 to make and submit code
changes to source code of'an application for a PaaS system. In
one embodiment, the source code is provided to application
store server device 105.

Application store server device 105 may be implemented
on one or more computing devices including, but not limited
to, server devices, desktop computers, laptop computers,
mobile devices, and so on. In one embodiment, application
store server device 105 receives and stores one or more
repositories 145a-1455 for applications. These received
repositories 1454-145b may be stored in a data store 140 of
application store server device 105. In one embodiment, the
applications associated with the repositories 145a-1455 may
be applications run on a PaaS system. For example, reposito-
ries 145a, 1455 include software code implemented via com-
puter-readable instructions that provides one or more gears to
be executed by the PaaS system. Each repository 1454, 1456
may include components of a certain application or compo-
nents of a certain gear that corresponds to an application or to
a portion of the application.

In one embodiment, a gear is a resource-constrained pro-
cess space to execute functionality of an application. For
example, a gear may include one or more components of a
composite application that includes functionality drawn from
multiple sources (e.g., functions from other applications or
systems). In some embodiments, a gear is established by a
node (e.g., a virtual machine (VM)) of the PaaS system with
resource boundaries, including a limit and/or designation of
the amount of memory, amount of storage, and security types
and/or labels to be applied to any functions executed by the
gear. In one embodiment, gears may be established using the
Linux Containers (LXC) virtualization method. In further
embodiments, gears may also be established using cgroups,
SELinux™, and kernel namespaces, to name a few examples.

In one embodiment, the PaaS system is a multi-tenant PaaS
product hosted in a cloud computing environment, such as
cloud provider system 160. The term “multi-tenant” refers to
a feature of the PaaS system that hosts multiple different web
applications having multiple different owners on a same vir-

20

25

40

45

4

tual machine (VM) in the cloud computing environment. In
production, such a multi-tenant PaaS system may execute
utilizing multiple computing devices to provide multiple tiers
of'the PaaS system, with a variety of inter-related components
and protocols. For example, the multiple tiers of the PaaS
system may include a client layer hosting client tools to
access the functionality of the PaaS system, a broker layer
having multiple broker machines to coordinate and configure
initialization of new end user applications, a node layer
including nodes (e.g., VM, physical machine, etc.) to host the
applications, messaging servers, a data store of a database, a
Domain Name Service (DNS) server, and so on.

In embodiments of the disclosure, instances 125a-1255b of
the applications associated with repositories 145a-145b can
be launched on a virtual machine (VM) 165 of the PaaS
system that is hosted by cloud provider system 160. An end
user may interact with and view the application instances
145a-145b using browser application 114 of client device
110.

In one embodiment, application store server device 105
includes a user interface module 115, a deployment module
120, an integration module 130, and the data store 140 to
provide a shared application store to select and deploy pre-
existing applications for the PaaS system. User interface
module 115 provides a graphical user interface (GUI) dis-
playing one or more already-built and configured applica-
tions 145a-1455 available for deployment on a PaaS system.
An end user may select one or more of the applications
145a-145 via the GUI provided by user interface module 115.

In one embodiment, deployment module 120 receives
information identifying an application selected by an end user
from a GUI provided by the application store server device
105. The deployment module 120 may include fork compo-
nent 122 and PaaS interface component 124. Fork component
124 may access the repository 145a, 1455 of the selected
application from data store 140 and ‘fork’ the application for
the end user. In one embodiment, forking is the action of
creating a copy that references an original, so that changes
can be tracked and flowed between the original (master) and
the forked copy.

Inone embodiment, the data store 140 implements a source
code management system, sometimes referred to as “SCM”
or revision control system. One example of such an SCM or
revision control system is Git, available as open source soft-
ware. Another example of an SCM system is Mercurial™.
The SCM system may provide explicit support for forking
operations. For example, the fork component 122 may coor-
dinate with the SCM of data store 140 to cause the SCM to
create a copy of a selected repository 145a, 1456 as a new
branch, with any later changes of that forked branch being
integrated with the main repository 145a, 1455 (Subject to
error checking, etc.). In one embodiment, the fork component
122 may be an implementation of the github application.

In some embodiments, the fork component 122 interacts
with PaaS interface module 124 to cause the forked repository
145a, 1455 to be deployed as an application instance 1254,
12556 on the PaaS system implemented in cloud provider
system 160. In other embodiments, the forked repository
145a, 145 is deployed locally on the end user’s client device
100, for example, on a locally-installed version of the PaaS
system (not shown).

FIG. 2 is a block diagram of a PaaS system architecture to
receive an application for deployment from a shared applica-
tion store for the PaaS system according to an embodiment of
the disclosure. The PaaS architecture allows users to launch
software applications in a cloud computing environment,
such as cloud computing environment offered by cloud pro-

US 9,100,401 B2

5

vide system 160 described with respect to FIG. 1. The PaaS
system architecture, in one embodiment, includes a client
layer 210, a broker layer 220, and a node layer 230.

In one embodiment, the components of the PaaS system
architecture are in communication, via network 205, with the
PaaS Interface module 124 application store server device
105 of FIG. 1. Network 205 may include, for example, the
Internet in one embodiment. In other embodiments, other
networks, wired and wireless, such as an intranet, local area
network (LAN), wide area network (WAN), or broadcast
network may be used.

In one embodiment, the client layer 210 resides on a client
machine, such as a workstation of a software developer, and
provides an interface to a user of the client machine to a
broker layer 220 of the PaaS system 200. In one embodiment,
the client machine is the same as client device 110 described
with respect to FIG. 1. The broker layer 220 may facilitate the
creation and deployment on the cloud (via node layer 230) of
software applications being deployed by an end user, via
application store server device 105 of FIG. 1, at client layer
210.

In one embodiment, an end user at client layer 210 may
select a fully-configured application from the application
store server device 105. As discussed above, application store
server device 105 may fork the stored repository 145 of the
selected application. In one embodiment, the stored reposi-
tory 145 is forked as a local copy directly to the client layer
210.

The client layer 210 includes an SCM system 212 having a
local software repository 215a, 21556, 215¢. In one embodi-
ment, the forked repository may be stored locally at the end
user device of client layer 210 as forked app local repo 215a.
The SCM 212 of client layer 210 may also store other local
copies of application repos, such as app1 local repo 2156 and
app 2 local repo 215c¢, for example.

Distributed SCM systems, such as SCM system 112, usu-
ally include a working directory for making changes, and a
local software repository 215a, 2156, 215¢ for storing the
changes for each application associated with the end user of
the PaaS system 200. The packaged software application can
then be “pushed” from the local SCM repository 215a, 2155,
215c¢ to a remote SCM repository 233a, 2335, 233¢ at the
node(s) 232a, 2325, 232¢ running the associated application.
From the remote SCM repository 233a, 2335, 233¢, the code
may be edited by others with access, or the application may be
executed by a machine. Other SCM systems work in a similar
manner.

In some embodiment, PaaS Interface module 124 may
interact with client layer 210 and broker layer 220 to cause a
selected application repo 145 to be forked and deployed
remotely on the PaaS system. Further description of this
implementation is discussed below after introduction of com-
ponents of the PaaS network architecture.

The client layer 210, in one embodiment, also includes a set
of command tools 214 that a user can utilize to create, launch,
and manage applications. In one embodiment, the command
tools 214 can be downloaded and installed on the user’s client
machine, and can be accessed viaa command line interface or
a graphical user interface, or some other type of interface. In
one embodiment, the command tools 214 expose an applica-
tion programming interface (“API”) of the broker layer 220
and perform other applications management tasks in an auto-
mated fashion using other interfaces, as will be described in
more detail further below in accordance with some embodi-
ments.

In one embodiment, the broker layer 220 acts as middle-
ware between the client layer 210 and the node layer 230. The

10

15

20

25

30

35

40

45

50

55

60

65

6

node layer 230 includes the nodes 232a-c¢ on which gears
235a-c of software applications are provisioned and
executed. As previously discussed, a gear 235a-¢ may include
aresource-constrained process space to execute functionality
of an application. In some embodiments, a gear 235a-c is
established by a node 232a-¢ with resource boundaries,
including a limit and/or designation of the amount of
memory, amount of storage, and security types and/or labels
to be applied to any functions executed by the gear. In one
embodiment, gears 235a-c may be established using the
Linux Containers (LXC) virtualization method. In further
embodiments, containers may also be established using
cgroups, SELinux™, and kernel namespaces, to name a few
examples.

In one embodiment, each node 2324-c is a VM provisioned
by an Infrastructure as a Service (IaaS) provider. In other
embodiments, the nodes 232a-c may be physical machines or
VMs residing on a single physical machine. In one embodi-
ment, the broker layer 220 is implemented on one or more
machines, such as server computers, desktop computers, etc.
In some embodiments, the broker layer 220 may be imple-
mented on one or more machines separate from machines
implementing each of the client layer 210 and the node layer
230, or may implemented together with the client layer 210
and/or the node layer 230 on one or more machines, or some
combination of the above.

In some embodiments, cartridges instances (originating
from cartridge library 237, as discussed below) for an appli-
cation may execute in gears 235a-c dispersed over more than
one node 232a-c, as shown with forked application gear A
2354 on node 2324 and forked application gear B 2355 on
node 2324. In other embodiments, cartridge instances for an
application 305 may also run in one or more gears 235a-c on
the same node 232a-c.

In one embodiment, the broker layer 220 includes a broker
222 that coordinates requests from the client layer 210 with
actions to be performed at the node layer 230. One such
request is new application creation. In one embodiment, when
a user, using the command tools 214 at client layer 210,
requests the creation of a new application, or some other
action to manage the application, the broker 222 first authen-
ticates the user using an authentication service 224. In one
embodiment, the authentication service may comprise cus-
tom authentication methods, or standard protocols such as
SAML, Oauth, etc. Once the user has been authenticated and
allowed access to the system by authentication service 224,
the broker 222 uses a server orchestration system 226 to
collect information and configuration information about the
nodes 232a-c.

In one embodiment, the broker 222 uses the Marionette
Collective™ (“MCollective™”) framework available from
Puppet Labs™ as the server orchestration system 226, but
other server orchestration systems may also be used. The
server orchestration system 226, in one embodiment, func-
tions to coordinate server-client interaction between multiple
(sometimes a large number of) servers. In one embodiment,
the servers being orchestrated are nodes 232a-¢, which are
acting as application servers and web servers.

For example, if the broker 222 wanted to shut down all
applications 235a-c on all even numbered nodes out of 100,
000 nodes, the broker 222 may provide one command to the
server orchestration system 226. Then, the server orchestra-
tion system 226 would generate and distribute a message to
all nodes 232a-c to shut down all applications 235a-c if the
node 232a-c is even, using a messaging and queuing system.
Thus, in one embodiment, the broker 222 manages the busi-
ness logic and model representing the nodes 2324-c and the

US 9,100,401 B2

7

applications (implemented via gears 235-2374, b) residing on
the nodes, and acts as a controller that generates the actions
requested by users via an API of the client tools 214. The
server orchestration system 226 then takes the actions gener-
ated by the broker 222 and orchestrates their execution on the
many nodes 232a-c managed by the system.

In one embodiment, the information collected about the
nodes 232a-c can be stored in a data store 228. In one embodi-
ment, the data store 228 can be a locally-hosted database or
file store, or it can be a cloud based storage service provided
by a Software-as-a-Service (SaaS) provider. The broker 222
uses the information about the nodes 232a-¢ and their appli-
cations to model the application hosting service and to main-
tain records about the nodes. In one embodiment, data of a
node 232a-c is stored in the form of a JavaScript Object
Notation (JSON) blob or string that maintains key-value pairs
to associate a unique identifier, a hostname, a list of applica-
tions, and other such attributes with the node.

In embodiments of the disclosure, the PaaS system archi-
tecture 200 of FIG. 2 is a multi-tenant PaaS environment. In a
multi-tenant PaaS environment, each node 232a-c¢ runs mul-
tiple applications (via gears 235a-c) that may be owned or
managed by different users and/or organizations. As such, a
first customer’s deployed applications may co-exist with any
other customer’s deployed applications on the same node 232
(VM) that is hosting the first customer’s deployed applica-
tions. In some embodiments, portions of an application are
run on multiple different nodes 232a-c. For example, as
shown in FIG. 2, gears 235a, 2355 of forked application are
run in both node 2324 and node 2325. Similarly, gears 236a,
2365 application 2 are run in node 2324 and node 232¢, while
gears 237a, 2375 of application 3 are run in node 2326 and
node 232c.

In addition, each node also maintains a cartridge library
237. The cartridge library 237 maintains multiple software
components (referred to herein as cartridges) that may be
utilized by gears 235-2374, b of the applications deployed on
node 232a-c. A cartridge can represent a form of support
software (or middleware) providing the functionality, such as
configuration templates, scripts, dependencies, to run a gear
235-237a, b of an application and/or add a feature to an
application. In one embodiment, the cartridges support lan-
guages such as, but not limited to, JBoss™, PHP, Ruby,
Python, Perl, and so on.

In addition, cartridges may be provided that support data-
bases, such as MySQL™, PostgreSQL™, Mongo™, and oth-
ers. Cartridges may also be available that support the build
and continuous integration environments, such as a Jenkins
cartridge. Lastly, cartridges may be provided to support man-
agement capabilities, such as PHPmyadmin, RockMongo™,
10gen-mms-agent, cron scheduler, and HAProxy, for
example. Adding an instance of a cartridge from cartridge
library 237 to a gear 235-237a, b of an application provides a
capability for the application without the customer who owns
the application having to administer or update the included
capability.

As discussed above, embodiments of the disclosure
include the PaaS interface module 124 interacting with client
layer 210 and broker layer 220 to cause a selected application
repo 145 to be forked and deployed remotely on the PaaS
system. For example, PaaS interface module 124 may interact
with authentication service 224 to authenticate the end user
selecting an application repo at the PaaS system. Once
authenticated, the PaaS interface module may interact with
broker layer 220, on the end user’s behalf, to cause a new
application to be created at the node layer 230 under a PaaS

10

15

20

25

30

35

40

45

50

55

60

65

8

account of the end user using the forked repo. The forked repo
145 may be stored in a remote repo 233« at the node layer 230.

The remote SCM repositories 233a, 2335, 233¢ store
applications for editing and/or for execution on the node
232a,232b,232c¢. In one embodiment, there is a remote SCM
repository 233a on each node 232a, 2325 that executes the
forked application. For example, the forked repo may be
stored to one or more nodes 2324, 2325 as forked app remote
repo 233a and then deployed. In one embodiment, each fork
of the repository would embody a different and unique con-
figuration of the application. When forking the application,
the contents of the repository are cloned onto the destination
(e.g., the remote repo or local VM node). That cloned reposi-
tory is the executable application, all of the application’s
components, and the specific/unique configuration for the
application. The differences between two “forks” of the
repository may be isolated to the configuration settings of
each forked repository.

Nodes 2324, 2325 may then execute forked app gears A
and B 235a, 2355 to implement functionality of the forked
application for the end user.

In some embodiments, a local copy of the forked repo,
which refers to the remote repo 2334, may also be stored at the
client layer as discussed above. This allows the end user to
make code changes to the forked application, and then store
those changes in the local SCM repository 215a associated
with the forked application. The updated software application
can then be provided (e.g., “pushed”) from the local SCM
repository 2154 to the remote SCM repository 233a.

Due to the nature of forking an application, changes made
to the source code of the application may be integrated back
to the master copy from which the forked application origi-
nated. As a result, in some embodiments, the changes made to
the forked app local repo 215 and/or the forked app remote
repo 233a may be contributed back to the master copy of the
application provided by the application store server device
105. Each copy of the forked application repository 215a,
233a may include identifying information of the location and
identification of the master copy of the application repo that
acted as the originating source.

As aresult, the SCM system 212 can implement function-
ality to cause changes made to the local repo 2154 or remote
repo 233a to be pushed back to the app source repo 145 at the
application store server device 105. The application store
server device 105 may then display the updated version of the
application as a different version of the application. In some
embodiments, revision and/or error controls may be imple-
mented to provide control over when and if contributed
changes are integrated into the master copy of the application
source code.

FIG. 3 is a flow diagram illustrating a method 300 for
providing an application from a shared application store for
deployment on a PaaS system via a local repository ofa user’s
device according to an embodiment of the disclosure. Method
300 may be performed by processing logic that may comprise
hardware (e.g., circuitry, dedicated logic, programmable
logic, microcode, etc.), software (such as instructions run on
a processing device), firmware, or a combination thereof. In
one embodiment, method 300 is performed by application
store server device 105 of FIG. 1.

Method 300 begins at block 310 where identifying infor-
mation of a repository stored by a shared application store is
received. The repository may include the application, all of
the application’s components, and the specific/unique con-
figuration of the particular version of the application in the
repository. In one embodiment, the repository is associated
with an application that is selected by a user for deployment

US 9,100,401 B2

9

on a PaaS system. The application may be selected via a GUI
provided by the application store server device, where the
GUI provides a listing of pre-configured and/or pre-built
applications that are ready for deployment in the PaaS sys-
tem. In addition, the repository of the selected application
may be stored in a data store of the application store server
device. The data store may be part of a SCM system executed
by the application server device.

At block 320, identifying information of a local repository
location on a device of the user is received. In one embodi-
ment, the local repository is a location to which the repository
of'the selected application is to be sent. The local repository of
the user’s device may be part of a SCM system that is asso-
ciated with the PaaS system.

Subsequently, at block 330, a command to fork the reposi-
tory of the selected application is issued. The command to
fork includes a destination of the local repository of the user’s
device, whose location was previously provided in block 320.
In one embodiment, the fork command is the action of creat-
ing a copy that references an original, so that changes can be
tracked and flowed between the original (master) and the
forked copy.

At block 340, the repository of the selected application is
accessed and a copy of the repository is generated. Further-
more, supporting information to maintain the forking opera-
tion is also generated. In one embodiment, this supporting
information may include identifying information of a loca-
tion of the master copy of the repository, versioning informa-
tion, and so on. At block 350, the generated copy of the
repository and the supporting information are sent to the
identified location of the local repository on the user’s device.
The application may then be deployed on the PaaS system
from the local repository subsequent to the sending.

At block 360, changes made to the source code of the
application at the local repository are sent to the application
store server device. The fork operation and sending of the
supporting information enables changes made to a forked
repository to be contributed back to a master repository. In
one embodiment, if the repository is part of a Git SCM, then
a push command is used by the local repository to contribute
any changes to the source code back to the master repository.
Lastly, at block 370, the received changes are provided as a
different version of the application that can be selected for
deployment on the PaaS system by the user, as well as other
users.

FIG. 4 is a flow diagram illustrating a method 400 for
providing an application from a shared application store for
deployment on a PaaS system via a remote repository asso-
ciated with a PaaS system account associated with a user that
selected the application according to an embodiment of the
disclosure. Method 400 may be performed by processing
logic that may comprise hardware (e.g., circuitry, dedicated
logic, programmable logic, microcode, etc.), software (such
as instructions run on a processing device), firmware, or a
combination thereof. In one embodiment, method 400 is per-
formed by application store server device 105 of FIG. 1.

Method 400 begins at block 410 where identifying infor-
mation of a repository is received. In one embodiment, the
repository is associated with an application that is selected by
auser for deployment on a PaaS system. The application may
be selected via a GUI provided by the application store server
device, where the GUI provides a listing of pre-configured
and/or pre-built applications that are ready for deployment in
the PaaS system. In addition, the repository of the selected
application may be stored in a data store of the application
store server device. The data store may be part of a SCM
system executed by the application server device.

20

30

35

40

45

10

At block 420, identifying information of a PaaS system
account of the user that selected the application is received. In
one embodiment, the user may provide this information to the
application store server device as intermediary. In other
embodiments, the user may directly provide this identifying
information to the PaaS system. Then, at block 430, a com-
mand to fork the repository of the selected application is
issued. The command to fork includes a destination of the
PaaS system to send the forked repository. In one embodi-
ment, the fork command is the action of creating a copy that
references an original, so that changes can be tracked and
flowed between the original (master) and the forked copy.

At block 440, the repository of the selected application is
accessed and a copy of the repository is generated. Further-
more, supporting information to maintain the forking opera-
tion is also generated. In one embodiment, this supporting
information may include identifying information of a loca-
tion of the master copy of the repository, versioning informa-
tion, and so on. At block 450, the generated copy of the
repository and the supporting information are sent to the PaaS
system. In one embodiment, the identifying information of
the PaaS user account is utilized when providing the forked
copy and the supporting information. The account informa-
tion is used by the PaaS system to deploy the forked reposi-
tory on a remote repository of the PaaS system, where the
remote repository is implemented on a node of the PaaS
system (e.g., a VM executing on a cloud provider system)
subsequent to the sending.

At block 460, changes made to the source code of the
application at the remote repository are sent to the application
store server device. The fork operation and sending of the
supporting information enables changes made to a forked
repository to be contributed back to a master repository. In
one embodiment, if the repository is part of a Git SCM, then
a push command is used by the remote repository to contrib-
ute any changes to the source code back to the master reposi-
tory. Lastly, at block 470, the received changes are provided
as adifferent version of the application that can be selected for
deployment on the PaaS system by the user, as well as other
users.

FIG. 5 illustrates a diagrammatic representation of a
machine in the example form of a computer system 500
within which a set of instructions, for causing the machine to
perform any one or more of the methodologies discussed
herein, may be executed. In alternative embodiments, the
machine may be connected (e.g., networked) to other
machines in a LAN, an intranet, an extranet, or the Internet.
The machine may operate in the capacity of aserver or aclient
device in a client-server network environment, or as a peer
machine in a peer-to-peer (or distributed) network environ-
ment. The machine may be a personal computer (PC), a tablet
PC, a set-top box (STB), a Personal Digital Assistant (PDA),
a cellular telephone, a web appliance, a server, a network
router, switch or bridge, or any machine capable of executing
a set of instructions (sequential or otherwise) that specify
actions to be taken by that machine. Further, while a single
machine is illustrated, the term “machine” shall also be taken
to include any collection of machines that individually or
jointly execute a set (or multiple sets) of instructions to per-
form any one or more of the methodologies discussed herein.

The computer system 500 includes a processing device
502, a main memory 504 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
(such as synchronous DRAM (SDRAM) or DRAM
(RDRAM), etc.), a static memory 506 (e.g., flash memory,

US 9,100,401 B2

11

static random access memory (SRAM), etc.), and a data stor-
age device 518, which communicate with each other via a bus
530.

Processing device 502 represents one or more general-
purpose processing devices such as a microprocessor, central
processing unit, or the like. More particularly, the processing
device may be complex instruction set computing (CISC)
microprocessor, reduced instruction set computer (RISC)
microprocessor, very long instruction word (VLIW) micro-
processor, or processor implementing other instruction sets,
or processors implementing a combination of instruction sets.
Processing device 502 may also be one or more special-
purpose processing devices such as an application specific
integrated circuit (ASIC), a field programmable gate array
(FPGA), a digital signal processor (DSP), network processor,
orthe like. The processing device 502 is configured to execute
the processing logic 526 for performing the operations and
steps discussed herein.

The computer system 500 may further include a network
interface device 508 communicably coupled to a network
520. The computer system 500 also may include a video
display unit 510 (e.g., a liquid crystal display (LCD) or a
cathode ray tube (CRT)), an alphanumeric input device 512
(e.g., akeyboard), a cursor control device 514 (e.g., a mouse),
and a signal generation device 516 (e.g., a speaker).

The data storage device 518 may include a machine-acces-
sible storage medium 524 on which is stored software 526
embodying any one or more of the methodologies of func-
tions described herein. The software 526 may also reside,
completely or at least partially, within the main memory 504
asinstructions 526 and/or within the processing device 502 as
processing logic 526 during execution thereof by the com-
puter system 500; the main memory 504 and the processing
device 502 also constituting machine-accessible storage
media.

The machine-readable storage medium 524 may also be
used to store instructions 526 to implement an application
store server device 105 to provide a shared application store
for a PaaS system in a computer system, such as the computer
system described with respect to FIG. 1, and/or a software
library containing methods that call the above applications.
While the machine-accessible storage medium 528 is shown
in an example embodiment to be a single medium, the term
“machine-accessible storage medium” should be taken to
include a single medium or multiple media (e.g., a centralized
or distributed database, and/or associated caches and servers)
that store the one or more sets of instructions. The term
“machine-accessible storage medium” shall also be taken to
include any medium that is capable of storing, encoding or
carrying a set of instruction for execution by the machine and
that cause the machine to perform any one or more of the
methodologies of the disclosure. The term “machine-acces-
sible storage medium” shall accordingly be taken to include,
but not be limited to, solid-state memories, and optical and
magnetic media.

In the foregoing description, numerous details are set forth.
It will be apparent, however, that the disclosure may be prac-
ticed without these specific details. In some instances, well-
known structures and devices are shown in block diagram
form, rather than in detail, in order to avoid obscuring the
disclosure.

Some portions of the detailed descriptions which follow
are presented in terms of algorithms and symbolic represen-
tations of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most
effectively convey the substance of their work to others

10

15

20

25

30

35

40

45

55

60

65

12

skilled in the art. An algorithm is here, and generally, con-
ceived to be a self-consistent sequence of steps leading to a
desired result. The steps are those requiring physical manipu-
lations of physical quantities. Usually, though not necessarily,
these quantities take the form of electrical or magnetic signals
capable of being stored, transferred, combined, compared,
and otherwise manipulated. It has proven convenient at times,
principally for reasons of common usage, to refer to these
signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate physi-
cal quantities and are merely convenient labels applied to
these quantities. Unless specifically stated otherwise, as
apparent from the following discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “sending”, “receiving”, “attaching”, “forwarding”, “cach-

7, ”, “determining”, “issuing”, or the like,

ing”, “referencing”,
refer to the action and processes of a computer system, or
similar electronic computing device, that manipulates and
transforms data represented as physical (electronic) quanti-
ties within the computer system’s registers and memories into
other data similarly represented as physical quantities within
the computer system memories or registers or other such
information storage, transmission or display devices.

The disclosure also relates to an apparatus for performing
the operations herein. This apparatus may be specially con-
structed for the purposes of embodiments of the disclosure, or
it may comprise a general purpose computer selectively acti-
vated or reconfigured by a computer program stored in the
computer. Such a computer program may be stored in a
machine readable storage medium, such as, but not limited to,
any type of disk including floppy disks, optical disks, CD-
ROMs, and magnetic-optical disks, read-only memories
(ROMs), random access memories (RAMs), EPROMs,
EEPROMSs, magnetic or optical cards, or any type of media
suitable for storing electronic instructions, each coupled to a
computer system bus.

The algorithms and displays presented herein are not inher-
ently related to any particular computer or other apparatus.
Various general purpose systems may be used with programs
in accordance with the teachings herein, or it may prove
convenient to construct more specialized apparatus to per-
form the described method steps. The structure for a variety of
these systems will appear as set forth in the description below.
In addition, the disclosure is not described with reference to
any particular programming language. It will be appreciated
that a variety of programming languages may be used to
implement the teachings of the disclosure as described herein.

The disclosure may be provided as a computer program
product, or software, that may include a machine-readable
medium having stored thereon instructions, which may be
used to program a computer system (or other electronic
devices) to perform a process according to the disclosure. A
machine-readable medium includes any mechanism for stor-
ing or transmitting information in a form readable by a
machine (e.g., acomputer). For example, a machine-readable
(e.g., computer-readable) medium includes a machine (e.g., a
computer) readable storage medium (e.g., read only memory
(“ROM”), random access memory (“RAM”), magnetic disk
storage media, optical storage media, flash memory devices,
etc.), etc.

Whereas many alterations and modifications of the disclo-
sure will no doubt become apparent to a person of ordinary
skill in the art after having read the foregoing description, it is
to be understood that any particular embodiment shown and
described by way of illustration is in no way intended to be

2

US 9,100,401 B2

13

considered limiting. Therefore, references to details of vari-
ous embodiments are not intended to limit the scope of the
claims, which in themselves recite those features regarded as
the disclosure.

What is claimed is:
1. A method, comprising:
receiving, by a processing device of an application store, an
indication of a selection of an application provided by
the application store, the application configured for
deployment on a platform-as-a-service (PaaS) system;

issuing, by the processing device, a fork command to create
a copy repository comprising a copy of a master reposi-
tory corresponding to the selected application;

in response to the fork command:

creating, by the processing device, the copy repository;
and

sending, by the processing device, the copy repository
for deployment on the PaaS system, wherein the fork
command to cause changes made to the copy reposi-
tory during the deployment on the PaaS system to be
tracked and to cause the tracked changes to flow to the
master repository without altering the master reposi-
tory.

2. The method of claim 1, wherein the copy repository is
stored at a local repository on a device of user providing the
indication.

3. The method of claim 1, wherein the copy repository is
stored at a remote repository on a node of the PaaS system.

4. The method of claim 3, wherein the node is a virtual
machine (VM).

5. The method of claim 1, wherein the master repository is
provided by a source code management (SCM) system.

6. The method of claim 1, further comprising receiving the
tracked changes to code repository.

7. The method of claim 6, further comprising providing the
received tracked changes as a different version of the master
repository of the application, wherein the different version
can be selected for deployment on the PaaS system by a
plurality of users.

8. A system, comprising:

a memory; and

aprocessing device communicably coupled to the memory,

the processing device to:
provide a graphical user interface (GUI) comprising a
listing of applications configured for deployment on a
platform-as-a-service (PaaS) system;
receive an indication of a selected application via the
GUI;
issue a fork command to fork a master repository corre-
sponding to the selected application;
in response to the fork command:
generate a copy repository comprising a copy of the
master repository and supplemental information
associated with the master repository to support the
fork command; and
send the copy repository and the supplemental infor-
mation for deployment on the PaaS system,
wherein the fork command to cause changes made
to the copy repository during the deployment on the
PaasS system to be tracked and to cause the tracked

10

15

20

25

30

35

40

45

50

55

14

changes to flow to the master repository without
altering the master repository.
9. The system of claim 8, wherein the copy repository is
stored at a local repository on a device of user providing the
indication.
10. The system of claim 8, wherein the copy repository is
stored at a remote repository on a node of the PaaS system.
11. The system of claim 8, wherein the master repository is
provided by a source code management (SCM) system.
12. The system of claim 8, wherein the supplemental infor-
mation comprises previous versions of the master repository
and a location of the master repository on the system to send
updates to the master repository.
13. The system of claim 8, wherein the processing device is
further to receive the tracked changes to the copy repository.
14. The system of claim 13, wherein the processing device
is further to provide the received tracked changes as a differ-
ent version of the master repository of the application,
wherein the different version can be selected for deployment
on the PaaS system by a plurality of users.
15. A non-transitory machine-readable storage medium
including data that, when accessed by a processing device,
cause the processing device to:
receive, by a processing device of an application store, an
indication of a selection of an application provided by
the application store, the application configured for
deployment on a platform-as-a-service (PaaS) system;

issue, by the processing device, a fork command to create
a copy repository comprising a copy of a master reposi-
tory corresponding to the selected application;

in response to the fork command:

create, by the processing device, the copy repository;
and

send, by the processing device, the copy repository for
deployment on the PaaS system, wherein the fork
command to cause changes made to the copy reposi-
tory during the on the PaaS system to be tracked and
to cause the tracked changes to flow to the master
repository without altering the master repository.

16. The non-transitory machine-readable storage medium
of claim 15, wherein the copy repository is stored at a local
repository on a device of user providing the indication.

17. The non-transitory machine-readable storage medium
of'claim 15, wherein the copy repository is stored at a remote
repository on a node of the PaaS system.

18. The non-transitory machine-readable storage medium
of claim 15, wherein the master repository is provided by a
source code management (SCM) system.

19. The non-transitory machine-readable storage medium
of claim 15, further comprising:

receiving the tracked changes to the copy repository; and

providing the received tracked changes as a different ver-

sion of the copy repository of the application, wherein
the different version can be selected for deployment on
the PaaS system by a plurality of users.

20. The method of claim 1, wherein the PaaS system com-
prises one or more nodes, wherein each of the one or more
nodes executes a plurality of application each having differ-
ent owners.

